Electronic Health Records (EHRs) hold detailed longitudinal information about each patient's health status and general clinical history, a large portion of which is stored within the unstructured text. Temporal modelling of this medical history, which considers the sequence of events, can be used to forecast and simulate future events, estimate risk, suggest alternative diagnoses or forecast complications. While most prediction approaches use mainly structured data or a subset of single-domain forecasts and outcomes, we processed the entire free-text portion of EHRs for longitudinal modelling. We present Foresight, a novel GPT3-based pipeline that uses NER+L tools (i.e. MedCAT) to convert document text into structured, coded concepts, followed by providing probabilistic forecasts for future medical events such as disorders, medications, symptoms and interventions. Since large portions of EHR data are in text form, such an approach benefits from a granular and detailed view of a patient while introducing modest additional noise. On tests in two large UK hospitals (King's College Hospital, South London and Maudsley) and the US MIMIC-III dataset precision@10 of 0.80, 0.81 and 0.91 was achieved for forecasting the next biomedical concept. Foresight was also validated on 34 synthetic patient timelines by 5 clinicians and achieved relevancy of 97% for the top forecasted candidate disorder. Foresight can be easily trained and deployed locally as it only requires free-text data (as a minimum). As a generative model, it can simulate follow-on disorders, medications and interventions for as many steps as required. Foresight is a general-purpose model for biomedical concept modelling that can be used for real-world risk estimation, virtual trials and clinical research to study the progression of diseases, simulate interventions and counterfactuals, and for educational purposes.
translated by 谷歌翻译
Quantum computing (QC) promises significant advantages on certain hard computational tasks over classical computers. However, current quantum hardware, also known as noisy intermediate-scale quantum computers (NISQ), are still unable to carry out computations faithfully mainly because of the lack of quantum error correction (QEC) capability. A significant amount of theoretical studies have provided various types of QEC codes; one of the notable topological codes is the surface code, and its features, such as the requirement of only nearest-neighboring two-qubit control gates and a large error threshold, make it a leading candidate for scalable quantum computation. Recent developments of machine learning (ML)-based techniques especially the reinforcement learning (RL) methods have been applied to the decoding problem and have already made certain progress. Nevertheless, the device noise pattern may change over time, making trained decoder models ineffective. In this paper, we propose a continual reinforcement learning method to address these decoding challenges. Specifically, we implement double deep Q-learning with probabilistic policy reuse (DDQN-PPR) model to learn surface code decoding strategies for quantum environments with varying noise patterns. Through numerical simulations, we show that the proposed DDQN-PPR model can significantly reduce the computational complexity. Moreover, increasing the number of trained policies can further improve the agent's performance. Our results open a way to build more capable RL agents which can leverage previously gained knowledge to tackle QEC challenges.
translated by 谷歌翻译
Reinforcement Learning has emerged as a strong alternative to solve optimization tasks efficiently. The use of these algorithms highly depends on the feedback signals provided by the environment in charge of informing about how good (or bad) the decisions made by the learned agent are. Unfortunately, in a broad range of problems the design of a good reward function is not trivial, so in such cases sparse reward signals are instead adopted. The lack of a dense reward function poses new challenges, mostly related to exploration. Imitation Learning has addressed those problems by leveraging demonstrations from experts. In the absence of an expert (and its subsequent demonstrations), an option is to prioritize well-suited exploration experiences collected by the agent in order to bootstrap its learning process with good exploration behaviors. However, this solution highly depends on the ability of the agent to discover such trajectories in the early stages of its learning process. To tackle this issue, we propose to combine imitation learning with intrinsic motivation, two of the most widely adopted techniques to address problems with sparse reward. In this work intrinsic motivation is used to encourage the agent to explore the environment based on its curiosity, whereas imitation learning allows repeating the most promising experiences to accelerate the learning process. This combination is shown to yield an improved performance and better generalization in procedurally-generated environments, outperforming previously reported self-imitation learning methods and achieving equal or better sample efficiency with respect to intrinsic motivation in isolation.
translated by 谷歌翻译
Building trustworthy, effective, and responsible machine learning systems hinges on understanding how differences in training data and modeling decisions interact to impact predictive performance. In this work, we seek to better understand how we might characterize, detect, and design for data-model synergies. We focus on a particular type of data-model inefficiency, in which adding training data from some sources can actually lower performance evaluated on key sub-groups of the population, a phenomenon we refer to as negative data externalities on group performance. Such externalities can arise in standard learning settings and can manifest differently depending on conditions between training set size and model size. Data externalities directly imply a lower bound on feasible model improvements, yet improving models efficiently requires understanding the underlying data-model tensions. From a broader perspective, our results indicate that data-efficiency is a key component of both accurate and trustworthy machine learning.
translated by 谷歌翻译
Two-stage robust optimization problems constitute one of the hardest optimization problem classes. One of the solution approaches to this class of problems is K-adaptability. This approach simultaneously seeks the best partitioning of the uncertainty set of scenarios into K subsets, and optimizes decisions corresponding to each of these subsets. In general case, it is solved using the K-adaptability branch-and-bound algorithm, which requires exploration of exponentially-growing solution trees. To accelerate finding high-quality solutions in such trees, we propose a machine learning-based node selection strategy. In particular, we construct a feature engineering scheme based on general two-stage robust optimization insights that allows us to train our machine learning tool on a database of resolved B&B trees, and to apply it as-is to problems of different sizes and/or types. We experimentally show that using our learned node selection strategy outperforms a vanilla, random node selection strategy when tested on problems of the same type as the training problems, also in case the K-value or the problem size differs from the training ones.
translated by 谷歌翻译
使用相对比心脏磁共振成像(PC-CMR)进行的流量分析可以量化用于评估心血管功能的重要参数。该分析的重要部分是鉴定正确的CMR视图和质量控制(QC),以检测可能影响流量定量的伪像。我们提出了一个新型的基于深度学习的框架,用于对完整CMR扫描的流量进行完全自动化的分析,该框架首先使用两个顺序卷积神经网络进行这些视图选择和QC步骤,然后进行自动主动脉和肺动脉分段,以实现对量化的量化。钥匙流参数。对于观察分类和QC,获得了0.958和0.914的精度值。对于细分,骰子分数为$> $ 0.969,而平淡的altman情节表示手动和自动峰流量值之间的一致性很高。此外,我们在外部验证数据集上测试了管道,结果表明管道的鲁棒性。这项工作是使用由986例病例组成的多生临床数据进行的,表明在临床环境中使用该管道的潜力。
translated by 谷歌翻译
电子商务搜索的关键是如何最好地利用大型但嘈杂的日志数据。在本文中,我们在Instacart介绍了基于嵌入的杂货搜索模型。该系统通过基于两个塔式变压器的编码器体系结构学习查询和产品表示。为了解决冷门问题,我们专注于基于内容的功能。为了在嘈杂的数据上有效地培训模型,我们提出了一种自我分歧学习方法和级联培训方法。Accon是一个离线人类评估数据集,我们在召回@20方面取得了10%的相对改善,对于在线A/B测试,我们每次搜索(CAPS)获得4.1%的Cart-Addds(CAPS)和1.5%的总商品价值(GMV)改进。我们描述了如何训练和部署基于嵌入的搜索模型,并对我们方法的有效性进行详细分析。
translated by 谷歌翻译
在计算机视觉中,在评估深度学习模型中的潜在人口偏见方面具有重要的研究兴趣。这种偏见的主要原因之一是训练数据中的失衡。在医学成像中,偏见的潜在影响可以说要大得多,因此兴趣较小。在医学成像管道中,对感兴趣的结构的分割在估计随后用于告知患者管理的临床生物标志物方面起着重要作用。卷积神经网络(CNN)开始用于自动化此过程。我们介绍了训练集失衡对种族和性别偏见在基于CNN的细分中的影响的首次系统研究。我们专注于从短轴Cine Cine心脏磁共振图像中对心脏结构进行分割,并训练具有不同种族/性别不平衡水平的CNN分割模型。我们发现性实验没有明显的偏见,但是在两个单独的种族实验中有明显的偏见,强调需要考虑健康数据集中不同人口组的足够代表。
translated by 谷歌翻译
用于生存预测的深层神经网络在歧视方面超过了经典方法,这是患者根据事件的秩序。相反,诸如COX比例危害模型之类的经典方法显示出更好的校准,即对基础分布事件的正确时间预测。特别是在医学领域,预测单个患者的存活至关重要,歧视和校准都是重要的绩效指标。在这里,我们提出了离散的校准生存(DC),这是一个新型的深层神经网络,用于歧视和校准的生存预测,在三个医疗数据集的歧视中优于竞争生存模型,同时在所有离散时间模型中实现最佳校准。 DC的增强性能可以归因于两个新型功能,即可变的时间输出节点间距和新颖的损耗项,可优化未经审查和审查的患者数据的使用。我们认为,DCS是临床应用基于深度学习的生存预测和良好校准的重要一步。
translated by 谷歌翻译
脑小血管疾病的成像标记提供了有关脑部健康的宝贵信息,但是它们的手动评估既耗时又受到实质性内部和间际变异性的阻碍。自动化评级可能受益于生物医学研究以及临床评估,但是现有算法的诊断可靠性尚不清楚。在这里,我们介绍了\ textIt {血管病变检测和分割}(\ textit {v textit {where valdo?})挑战,该挑战是在国际医学图像计算和计算机辅助干预措施(MICCAI)的卫星事件中运行的挑战(MICCAI) 2021.这一挑战旨在促进大脑小血管疾病的小而稀疏成像标记的自动检测和分割方法的开发,即周围空间扩大(EPVS)(任务1),脑微粒(任务2)和预先塑造的鞋类血管起源(任务3),同时利用弱和嘈杂的标签。总体而言,有12个团队参与了针对一个或多个任务的解决方案的挑战(任务1 -EPVS 4,任务2 -Microbleeds的9个,任务3 -lacunes的6个)。多方数据都用于培训和评估。结果表明,整个团队和跨任务的性能都有很大的差异,对于任务1- EPV和任务2-微型微型且对任务3 -lacunes尚无实际的结果,其结果尤其有望。它还强调了可能阻止个人级别使用的情况的性能不一致,同时仍证明在人群层面上有用。
translated by 谷歌翻译